Market access proposals

- The core of the Doha Agenda
- Easy to evaluate the “pain” from reform
- Difficult to evaluate the “gain” from other countries’ reforms
 - Depends on actions by over 150 economies
 - Complex tariff-cutting rules
 - Flexibilities in agriculture and non-agriculture
 - Which products will be selected?
 - What impact will this have on market access?
- How to assess the resulting impacts?
 - Weights on highly-protected products too low
Roadmap

- Outline of market access proposals
- How will the flexibilities be used?
- Implications for tariffs levied & faced
- *Ex ante* estimates of welfare impacts
Non-Agricultural Market Access

- Swiss formula for bound tariffs
 - Highest tariffs cut the most
- No final tariff, t_1 above the ceiling, a
 \[t_1 = \frac{a.t_0}{a + t_0} \]
- Developed country ceiling of 8%, ceilings for developing countries, 20, 22, 25%
 - Developing countries have flexibilities
 - eg 20% ceiling with zero cuts on 6.5% of tariff lines, no more than 7.5% of imports; 25% ceiling, no flex
Swiss formula, ceiling of 20%

The diagram illustrates the relationship between the initial tariff and the final tariff, considering the Swiss formula with a ceiling of 20%. The graph shows two curves:

- **Post-Formula Tariff Rate, Swiss Formula Coef 20**: This curve represents the change in tariff rate post-formula application, influenced by the Swiss formula with a ceiling of 20%.
- **Tariff Cut equivalent (SW Coef. 20)**: This curve indicates the equivalent tariff cut due to the Swiss formula, also capped at 20%.

The x-axis represents the initial tariff values, ranging from 0% to 100%, while the y-axis represents the final tariff values, ranging from 0% to 18%.
Agricultural market access

- Tiered formula to cut **bound** tariffs
 - Different coefficients for developed & developing countries
 - Wider bands & smaller cuts in developing countries

- Flexibilities
 - Sensitive products for all countries
 - 4% of tariff lines in developed countries; 5.3% in developing
 - Assume cuts reduced by one third
 - Special products for developing countries
 - 14% of lines; 40% no cut; average-cut of 11%
Tiered Formula for Agriculture

<table>
<thead>
<tr>
<th></th>
<th>Developed</th>
<th></th>
<th>Developing</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Band</td>
<td>Range</td>
<td>Cut</td>
<td>Range</td>
</tr>
<tr>
<td>A</td>
<td>0-20</td>
<td>50</td>
<td>0-30</td>
<td>33.3</td>
</tr>
<tr>
<td>B</td>
<td>20-50</td>
<td>57</td>
<td>30-80</td>
<td>38</td>
</tr>
<tr>
<td>C</td>
<td>50-75</td>
<td>64</td>
<td>80-130</td>
<td>42.7</td>
</tr>
<tr>
<td>D</td>
<td>>75</td>
<td>70</td>
<td>>130</td>
<td>46.7</td>
</tr>
<tr>
<td></td>
<td>Average-cut</td>
<td>Min</td>
<td>54%</td>
<td>Max</td>
</tr>
</tbody>
</table>
Agric cuts & final tariffs, %

Initial Tariff vs. Final Tariff

- Post-Formula Tariff Rate
- Tariff Cut equivalent

Points A, B, C, D indicate specific tariff cut equivalents for initial tariffs.
Selection for product flexibilities

• Highest tariff rule frequently used
 ◦ No conceptual basis
 ◦ Highest bound tariff includes many products with huge binding overhang and no need to cut
 ◦ Many of the highest applied tariffs are on minor products
 ◦ Suggests adverse impacts of flexibilities on average tariffs are very small

• Use Grossman-Helpman political preference function
 ◦ Assume original tariffs reflect political-economy equilibrium
 ◦ Countries select sensitive prods to minimize political costs
 ◦ Get more plausible product lists; large impacts on efficiency; not so large on market access
Grossman-Helpman Preference Fn

\[G(p, u) = \sum_{i \in L} C_i(p) + aW(p) \]

- \(C_i(p) \) is contributions by lobby \(i \)
- \(W \) is aggregate economic welfare
- \(a \) is weight on welfare costs relative to contributions \(\approx 50 \)
Rearranging & differentiating

\[G^*(p, u) = \frac{1}{a} \, \mu' C(p) + (-z(p, u) + z_p'(p - p^*)) \]

Where \(z = e(p, u) - g(p) \)

\[\text{d}G^* = \left[\frac{1}{a} \, \mu' \frac{\partial C}{\partial p} + (p - p^*)'z_{pp} \right] \text{d}p = 0 \]

First Order Condition for short-run, where output fixed

\[h + (p^0 - p^*)'z^0_{pp} = 0 \]
Marginal benefits and costs

Marginal Benefits, Costs

\[\frac{1}{a} \cdot MC \]

\[h_i \]

\[\tau_0 \]

\[\tau \]
Net political welfare
Inferring political costs

\[\frac{\partial^2 G^*}{\partial p^2} = z_{pp} + z_{ppp}(p - p*) \]

- Need \(G^* \) to be concave in \(p \)
 - \(z \) is, by definition, concave in \(p \)
 - But this does not guarantee \(G^* \) is concave

- Sufficient condition: \(z \) is generalized quadratic
 - Fully flexible—2nd order approx to any function
 - With six-digit tariffs, over 12 million independent coefficients
Implementation

- Apply formulas to bound tariff rates
 - Cut applied rates when new bound below applied

- Include flexibilities
 - Choose lines to minimize loss of political welfare
 - Choose NAMA flexibility regime and products to minimize the loss of political welfare

- Check that agric tariff cuts meet minimum average-cut requirement for developed countries, maximum for developing
 - Adjust cuts if needed
Identify sensitive prods in 3 ways

- Use CES to solve simultaneously by nonlinear integer programming
 \[G = - z(p, u) + p^* z_{pp} p + z_p (p-p^*) \]
 - Subject to restrictions on # or trade share and rules on reduction of sensitive/special products

- One equation at a time solution with CES

- One equation at a time with estimated elasticities
Impact of 2% sensitive agric lines (base level and changes in pp)

<table>
<thead>
<tr>
<th></th>
<th>Base</th>
<th>Formula</th>
<th>2% Sens</th>
<th>2% Sens simple</th>
<th>2% Trade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developed</td>
<td>14.9</td>
<td>8.5</td>
<td>4.3</td>
<td>4.4</td>
<td>6.8</td>
</tr>
<tr>
<td>Non-LDC Developing</td>
<td>14.6</td>
<td>6.0</td>
<td>3.1</td>
<td>3.1</td>
<td>4.8</td>
</tr>
</tbody>
</table>
Changing # of sensitive products

Developed countries, constraint in % of lines
Developed countries, constraint in % of lines
Developed countries, constraint in % of trade
Developed countries, constraint in % of trade

Applied tariffs - Trade weighted average
Share of sensitive products
Tariff Scenarios

- Base
- Formula
- Flex—Formula plus flexibilities
Cuts in agricultural tariffs, %

- Developed
- Developing

- Formula
- Flex
Cuts in agricultural tariffs faced, %
Cuts in NAMA bound tariffs, %

- Developed
- Developing

- Formula
- Flex
Cuts in NAMA tariffs applied, %
Cuts in NAMA tariffs faced, %

- Developed:
 - Formula: 30%
 - Flex: 20%

- Developing:
 - Formula: 26%
 - Flex: 18%
NAMA Tariffs Faced, %

<table>
<thead>
<tr>
<th>Country</th>
<th>Base</th>
<th>Formula</th>
<th>Flex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia NZ</td>
<td>2.9</td>
<td>2.0</td>
<td>2.6</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>3.7</td>
<td>1.7</td>
<td>1.8</td>
</tr>
<tr>
<td>Brazil</td>
<td>2.6</td>
<td>1.9</td>
<td>2.2</td>
</tr>
<tr>
<td>Canada</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>China</td>
<td>3.8</td>
<td>2.3</td>
<td>2.5</td>
</tr>
<tr>
<td>EU-27</td>
<td>3.6</td>
<td>2.7</td>
<td>3.0</td>
</tr>
<tr>
<td>India</td>
<td>4.6</td>
<td>3.1</td>
<td>3.6</td>
</tr>
<tr>
<td>Indonesia</td>
<td>3.4</td>
<td>2.2</td>
<td>2.5</td>
</tr>
<tr>
<td>Japan</td>
<td>4.5</td>
<td>3.0</td>
<td>3.5</td>
</tr>
<tr>
<td>Korea & Taiwan Pr.</td>
<td>3.8</td>
<td>2.6</td>
<td>2.9</td>
</tr>
<tr>
<td>Sub-Saharan Africa</td>
<td>2.1</td>
<td>1.4</td>
<td>2.0</td>
</tr>
<tr>
<td>USA</td>
<td>1.8</td>
<td>1.4</td>
<td>1.5</td>
</tr>
</tbody>
</table>

World Bank Groups

<table>
<thead>
<tr>
<th>Group</th>
<th>Base</th>
<th>Formula</th>
<th>Flex</th>
</tr>
</thead>
<tbody>
<tr>
<td>All countries</td>
<td>2.9</td>
<td>2.0</td>
<td>2.3</td>
</tr>
<tr>
<td>Developing (non LDC)</td>
<td>2.9</td>
<td>1.9</td>
<td>2.1</td>
</tr>
<tr>
<td>High income</td>
<td>3.0</td>
<td>2.1</td>
<td>2.4</td>
</tr>
<tr>
<td>LDCs</td>
<td>2.8</td>
<td>1.5</td>
<td>1.8</td>
</tr>
</tbody>
</table>
Welfare evaln: need to aggregate

- Tariffs (and tariff equiv) are highly diverse
- Typically aggregate from 10,000 tariff lines to 20-25 for quantitative modeling
 - Weighted averages are flawed
 - The higher the tariff, the smaller the weight
 - Enormous waste of information
 - Have the theory and the data to do better
- Anderson-Neary insight
 - Choose aggregators to reproduce the function of interest
National model for aggregation

- Characterize each economy using a Balance of Trade function
 \[B = e(p,u) - \pi(p) - z_p(p-p^w) \]
 - \(e(p,u) \) = Expenditure need to achieve utility \(u \)
 - \(\pi(p) \) = Profit (GDP) at price \(p \)
 - \(z(p,u) \) = Net expenditure = \(e - \pi \)
 - \(z_p(p,u) = (e_p - \pi_p) \) = Net imports
 - \(z'_p(p-p^w) \) = Tariff revenues
Expenditure & qty aggregators

- Assume imperfect substitution between different goods at tariff line or HS 6 category
 - For 2-stage budgeting, utility functions must be weakly separable & the sub-utility functions homothetic
 - But we assume this every time we use an aggregate
 - Then can write the expenditure function in terms of aggregated prices and quantities

- Within the group, expenditure increases with the price of the good, but at a decreasing rate
 - Slope = e_p
Tariff revenue aggregator

- Want a measure that takes account of the fact that increases in high tariffs reduce revenues by more than the quantity loss

- Slope of the tariff revenue function
 - $e_p + (p-p^w)e_{pp}$
 - Becomes negative for large enough tariff
 - The “Laffer curve”
Marginal impacts of tariff change

\[-\Delta \text{Exp}, \]
\[-\Delta \text{Tariff Rev.} \]

\[x_1 \]
\[x_0 \]

\[0 \]
\[t_0 \]

\[\text{Tariff} \]

\[e_p + t.e_{pp} \]
Implementation

- Use 6-digit tariff and trade data from MAcMapHS6 v2.1 dataset
- Assume CES sub-aggregators,
 - Closed-form solution for the expenditure aggregator
- The tariff revenue aggregator
 - Must assume imports separable from domestic goods
 - Use weighted-average with weights adjusting
- CES aggregators allow extensive-margin growth
 - As long as the model can represent this
In a global model

- Walras’ law a problem at the global level
 - Can’t solve as income doesn’t equal expenditure
- Distinguish quantities at domestic \((u_i) \) & world prices \((x_i^*) \)
 - \[u_i = x_i^* (1 + \tau_i^R) / (1 + \tau_i^e) \]
- Which allows global adding up
 - \[u_i (1 + \tau_i^e) p^w = x_i^* (1 + \tau_i^R) p^w \]
Computing aggregates

- Compute the expenditure tariff aggregator y using a domestic price index

 $$P = PCIF \times \left(\sum_i \alpha_i (1 + t_i)^{1-\sigma} \right)^{1/(1-\sigma)}$$

 So \(\tau^e = \frac{P}{PCIF} - 1 \)
Implementation

- Modify the World Bank LINKAGE model to distinguish quantities at domestic and at world prices
- Calculate the expenditure & tariff revenue aggregators
- Simulate impacts of changes
- Could add modeling of increases in variety
Nesting structure

\[
M(i, r, s) \\
\text{(...)} \\
M^1(i, r, n) \\
\text{(...)} \\
M^2(\text{hs6}, r, n) \\
\text{(...)} \\
\]

Cobb-Douglas

CES \(\sigma_1\)

CES \(\sigma_2\)

\(x(\text{hs6}, m, n)\) \\
\text{(...)}
Parameter estimates

- Great uncertainty about the elasticity of substitution at the six-digit level.

- Averages:
 - Kee, Nicita & Olarreaga $\eta = 3.12$
 - Hummels & Klenow $\sigma_2 = 7.5$
 - Broda and Weinstein $\sigma_2 = 13$

- Consider $\sigma_1 = 2$ or 5 in this initial study

- Use σ_2 twice as large (not influential)

- We ignore effects of new varieties
 - Standard models doesn’t allow us to model changes in the number of varieties
<table>
<thead>
<tr>
<th>Country</th>
<th>Full</th>
<th>Formula</th>
<th>Flex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia/N Zealand</td>
<td>16.8</td>
<td>4.8</td>
<td>2.4</td>
</tr>
<tr>
<td>EU 27</td>
<td>180.4</td>
<td>58.7</td>
<td>39.3</td>
</tr>
<tr>
<td>USA</td>
<td>53.8</td>
<td>14.5</td>
<td>9.9</td>
</tr>
<tr>
<td>Japan</td>
<td>64.9</td>
<td>29.2</td>
<td>21.8</td>
</tr>
<tr>
<td>Korea & Taiwan</td>
<td>98.7</td>
<td>21.2</td>
<td>9.8</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>0.2</td>
<td>-0.2</td>
<td>-0.2</td>
</tr>
<tr>
<td>Brazil</td>
<td>30.8</td>
<td>9.8</td>
<td>4.7</td>
</tr>
<tr>
<td>China</td>
<td>-8.6</td>
<td>9.7</td>
<td>8.9</td>
</tr>
<tr>
<td>India</td>
<td>24.3</td>
<td>6.1</td>
<td>2.4</td>
</tr>
<tr>
<td>Indonesia</td>
<td>3.9</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Thailand</td>
<td>8.7</td>
<td>4.5</td>
<td>2.6</td>
</tr>
<tr>
<td>High income countries</td>
<td>484</td>
<td>141</td>
<td>91</td>
</tr>
<tr>
<td>Developing Countries</td>
<td>241</td>
<td>61.5</td>
<td>31</td>
</tr>
<tr>
<td>Sub Saharan Africa</td>
<td>30</td>
<td>6.6</td>
<td>0.6</td>
</tr>
<tr>
<td>World total</td>
<td>725</td>
<td>202</td>
<td>121</td>
</tr>
</tbody>
</table>
Impacts of σ_1, DDA

<table>
<thead>
<tr>
<th>Region</th>
<th>Weighted Ave</th>
<th>$\sigma = 2$</th>
<th>$\sigma = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia/NZ</td>
<td>1.9</td>
<td>2.4</td>
<td>3.6</td>
</tr>
<tr>
<td>EU 27</td>
<td>30</td>
<td>39</td>
<td>53</td>
</tr>
<tr>
<td>USA</td>
<td>6.4</td>
<td>9.9</td>
<td>14.1</td>
</tr>
<tr>
<td>Japan</td>
<td>18.4</td>
<td>21.8</td>
<td>26.1</td>
</tr>
<tr>
<td>Korea/Taiwan</td>
<td>9.3</td>
<td>9.8</td>
<td>10.5</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>-0.4</td>
<td>-0.2</td>
<td>-0.3</td>
</tr>
<tr>
<td>Brazil</td>
<td>4.2</td>
<td>4.7</td>
<td>6.0</td>
</tr>
<tr>
<td>China</td>
<td>5.7</td>
<td>8.9</td>
<td>13.9</td>
</tr>
<tr>
<td>India</td>
<td>2.5</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>Indonesia</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Thailand</td>
<td>1.8</td>
<td>2.6</td>
<td>4.2</td>
</tr>
<tr>
<td>High income cties</td>
<td>71</td>
<td>91</td>
<td>118</td>
</tr>
<tr>
<td>Developing cties</td>
<td>22</td>
<td>31</td>
<td>44</td>
</tr>
<tr>
<td>SS Africa</td>
<td>0.1</td>
<td>0.6</td>
<td>1.5</td>
</tr>
<tr>
<td>World total</td>
<td>94</td>
<td>121</td>
<td>161</td>
</tr>
</tbody>
</table>
Conclusions

- Modalities involve deep and sharply-harmonizing cuts in tariffs
 - Together with flexibilities that reduce cuts on self-selected products
- Need careful approaches to predict products for flexibilities
 - Adverse impacts much larger than suggested by *ad hoc* rules like highest-tariff
- Optimal aggregation of distortions increases the estimated real-income gains